Skip to main content

Harshad Number | C programming

 Q.10   WAP in C/ C++/ java to check whether a number is a Harshad Number or not. 

In recreational mathematics, a Harshad number in a given number base is an integer that is divisible by the sum of its digits when written in that base.

        Example: Number 200 is a Harshad Number because the sum of digits 2 and 0 and 0 is 2(2+0+0) and 200 is divisible by 2. Number 171 is a Harshad Number because the sum of digits 1 and 7 and 1 is 9(1+7+1) and 171 is divisible by 9.


    Solution : 

#include<stdio.h>

int sumofdigits(int x) // function to compute sum of digits
{
    int sum=0;
    while(x>0)
    {
        sum+=x%10;
        x=x/10;
    }
    return sum;
}

void main()
{
    int nsod;
    printf("\nEnter any positive number : ");
    scanf("%d"&n);

    if (n<0)
    {
        printf("\nInvalid input! Enter the value again -->");
        main(); // calls the main() function again
    }
    else
    {
        sod=sumofdigits(n);
        if(n%sod == 0)
            printf("%d is a Harshad Number\n",n);
        else
            printf("%d Not a harshad number\n",n);
    }
// end of main()



Comments

  1. Wow ho!...Where haveu got these numbers...Its truly amazing...And I even didnot know that a number name "Harshad"(from Harshad Mehta) was there for so many years ....Thanks a ton buddy 👍

    ReplyDelete

Post a Comment

Popular posts from this blog

Calculating Sum of digits & total number of digits | C programming

  Q.7       WAP in C/ C++/ java to find the sum of the digits of the number and also count   the number of digits present.          Example,                      Input : 123,                       Output : Sum of digits = 6             [ expl. 1+2+3]                                          Total digits = 3 Solutions : #include <stdio.h> int   digits ( int  x)  // function to count total no. of digits {      int   c = 0 ;      while  (x > 0 )     {       ...

Happy Number Solution | Recursion

  /**  * Write a Java program to find and print the Happy numbers between m and n. Happy number: Starting with any positive integer, replace the number by the sum of the squares of its digits,  and repeat the process until the number equals 1, or it loops endlessly in a cycle which does not include 1. Example: 19 is a happy number 1^2 + 9^2=82 8^2 + 2^2=68 6^2 + 8^2=100 1^2 + 0^2 + 02=1 The first few happy numbers are 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, ...  */ import java.util.*; public class HappyNum {     public static int digitSq( int x) // recursive function to find square of digits of the number     {         if(x<10)         return x*x;         else         return (x%10)*(x%10) + digitSq(x/10);     } // end of digitSq()          public static boolean isHappy(int num, int i) ...