Skip to main content

Lucas Sequence Program Solution

 /**

 * Write a Java program to display first N Lucas numbers. ( 3>N>100 )

The Lucas numbers or series are integer sequences named after the mathematician François Édouard Anatole Lucas, 

who studied both that sequence and the closely related Fibonacci numbers. 

Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The sequence of Lucas numbers : 2, 1, 3, 4, 7, 11, 18, 29, ….

 */

import java.util.*;

public class Lucas

{

    public static void lucas(int x, int a, int b) //recursive function to display lucas series

    {

        if(x==0)

            System.out.println();

        else

        {

            int c=a+b;

            a=b;

            b=c;

            System.out.print(",   "+c);

            lucas(x-1,a,b);

        }

    }  // end of lucas()

    

    public static void main()

    {

        Scanner sc=new Scanner(System.in);

        System.out.print("\nEnter number of terms : ");

        int N=sc.nextInt();

        if(N>3 && N<100)

        {

            System.out.println("\nThe sequence of "+N+" Lucas numbers are :  ");

            System.out.print(" 2,  1");

            lucas(N-2,2,1);

        }

        else

        {

            System.out.println("OUT OF RANGE.");

        }

    }  // end of main

}  // end of class

Comments

Popular posts from this blog

Harshad Number | C programming

  Q.10     WAP in C/ C++/ java to check whether a number is a  Harshad Number  or not.  In recreational mathematics, a Harshad number in a given number base is an integer that is divisible by the sum of its digits when written in that base.         Example: Number 200 is a Harshad Number because the sum of digits 2 and 0 and 0 is 2(2+0+0) and 200 is divisible by 2. Number 171 is a Harshad Number because the sum of digits 1 and 7 and 1 is 9(1+7+1) and 171 is divisible by 9.     Solution :  #include <stdio.h> int   sumofdigits ( int  x)  // function to compute sum of digits {      int   sum = 0 ;      while (x > 0 )     {          sum += x % 10 ;         x = x / 10 ;     }      return   sum ; } void   main () {      int   n ,  sod ;      printf ( " \n Enter any positive number : " );      scanf ( " %d " ,  & n );      if  ( n < 0 )     {          printf ( " \n Invalid input! Enter the value again -->" );          main ();  // calls the m

Happy Number Solution | Recursion

  /**  * Write a Java program to find and print the Happy numbers between m and n. Happy number: Starting with any positive integer, replace the number by the sum of the squares of its digits,  and repeat the process until the number equals 1, or it loops endlessly in a cycle which does not include 1. Example: 19 is a happy number 1^2 + 9^2=82 8^2 + 2^2=68 6^2 + 8^2=100 1^2 + 0^2 + 02=1 The first few happy numbers are 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, ...  */ import java.util.*; public class HappyNum {     public static int digitSq( int x) // recursive function to find square of digits of the number     {         if(x<10)         return x*x;         else         return (x%10)*(x%10) + digitSq(x/10);     } // end of digitSq()          public static boolean isHappy(int num, int i)  // recursive function to check whether the no. is happy or not     {         //System.out.println(num);         if(num==1)         return true;         else i